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The Landau-Lifshitz-Gilbert damping parameter is typically assumed to be a local quantity, independent of
magnetic configuration. To test the validity of this assumption we calculate the precession damping rate of
small amplitude nonuniform mode magnons in iron, cobalt, and nickel. At scattering rates expected near and
above room temperature, little change in the damping rate is found as the magnon wavelength is decreased
from infinity to a length shorter than features probed in recent experiments. This result indicates that nonlocal
effects due to the presence of weakly nonuniform modes, expected in real devices, should not appreciably
affect the dynamic response of the element at typical operating temperatures. Conversely, at scattering rates
expected in very pure samples around cryogenic temperatures, nonlocal effects result in an order of magnitude
decrease in damping rates for magnons with wavelengths commensurate with domain-wall widths. While this
low-temperature result is likely of little practical importance, it provides an experimentally testable prediction
of the nonlocal contribution of the spin-orbit torque-correlation model of precession damping. None of these
results exhibit strong dependence on the magnon propagation direction.
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Magnetization dynamics continues to be a technologically
important, but incompletely understood topic. Historically,
field-induced magnetization dynamics have been described
adequately by the phenomenological Landau-Lifshitz �LL�
equation1

ṁ = − ��M�m � H + �m̂ � �m � H� , �1�

or the mathematically equivalent Gilbert form.2,3 Equation
�1� accounts for the near equilibrium dynamics of systems in
the absence of an electrical current. �M is the gyromagnetic
ratio and � is the phenomenological damping parameter,
which quantifies the decay of the excited system back to
equilibrium. The LL equation is a rather simple approxima-
tion to very intricate dynamic processes. The limitations of
the approximations entering into the LL equation are likely
to be tested by the next generation of magnetodynamic de-
vices. While many generalizations for the LL equation are
possible, we focus on investigating the importance of nonlo-
cal contributions to damping. It is generally assumed in both
analyzing experimental results and in performing micromag-
netic simulations that damping is a local phenomenon. While
no clear experimental evidence exists to contradict this as-
sumption, the possibility that the damping is nonlocal—that
it depends, for example, on the local gradient of the
magnetization—would have particular implications for ex-
periments that quantify spin-current polarization,4 for
storage5 and logic6 devices based on using this spin current
to move domain walls, quantifying vortex7 and mode8 dy-
namics in patterned samples, and the behavior of nanocon-
tact oscillators.9,10

While several viable mechanisms have been proposed to
explain the damping process in different systems,11–17 we
restrict the scope of this Brief Report to investigating the
degree to which the assumption of local damping is violated
for small amplitude dynamics within pure bulk transition-

metal systems where the dominant source of damping is the
intrinsic spin-orbit interaction. For such systems,
Kamberský’s14 spin-orbit torque-correlation model, which
predicts a decay rate for the uniform precession mode of

�0 =
���M

2

�0
�
nm
� dk��nm

− �k��2Wnm�k� , �2�

has recently been demonstrated to account for the majority of
damping.18,19 The matrix elements ��nm

− �k��2 represent a scat-
tering event in which a quantum of the uniform mode decays
into a single quasiparticle electron-hole excitation. This an-
nihilation of a magnon raises the angular momentum of the
system, orienting the magnetization closer to equilibrium.
The excited electron, which has wave vector k and band
index m, and the hole, with wave vector k and band index n,
carry off the energy and angular momentum of the magnon.
This electron-hole pair is rapidly quenched through lattice
scattering. The weighting function Wnm�k� measures the rate
at which the scattering event occurs. The very short lifetime
of the electron-hole pair quasiparticle �on the order of fs at
room temperature� introduces significant energy broadening
�several hundred meV�. The weighting function, which is a
generalization of the delta function appearing in a simple
Fermi’s golden rule expression, quantifies the energy overlap
of the broadened electron and hole states with each other and
with the Fermi level.

Equation �2�, which has been discussed
extensively,14,18–20 considers only local contributions to the
damping rate. Nonlocal contributions to damping may be
studied through the decay of nonuniform spin waves. Al-
though recent efforts have approached the problem of nonlo-
cal contributions to the dissipation of noncollinear excited
states21,22 the simple step of generalizing Kamberský’s
theory to nonuniform mode magnons has not yet been taken.
We fill this obvious gap, obtaining a damping rate of
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for a magnon with wave vector q. We test the importance of
nonlocal effects by quantifying this expression for varying
degrees of magnetic noncollinearity �magnon wave-vector
magnitude�. The numerical evaluation of Eq. �3� for the
damping rate of finite wavelength magnons in transition-
metal systems, presented in Fig. 1, and the ensuing physical
discussion form the primary contribution of this Brief Re-
port. We find that the damping rate expected in very pure
samples at low temperature is rapidly reduced as the magnon
wave vector �q� grows, but the damping rate anticipated out-

side of this ideal limit is barely affected. We provide a simple
band-structure argument to explain these observations. The
results are relevant to systems for which the noncollinear
excitation may be expanded in long-wavelength spin waves,
provided the amplitude of these waves is small enough to
neglect magnon-magnon scattering.

Calculations for the single-mode damping constant �Eq.
�3�� as a function of electron-scattering rate are presented in
Fig. 1 for iron, cobalt, and nickel. The Gilbert damping pa-
rameter �=� /�M is also given. Damping rates are given for
magnons with wave vectors along the bulk equilibrium di-
rections, which are �100	 for Fe, �0001	 for Co, and �111	 for
Ni. Qualitatively and quantitatively similar results were ob-
tained for other magnon wave-vector directions for each
metal. The magnons reported in Fig. 1 constitute small de-
viations of the magnetization transverse to the equilibrium
direction with wave-vector magnitudes between zero and 1%
of the Brillouin-zone edge. This wave-vector range corre-
sponds to magnon half-wavelengths between infinity and 100
lattice spacings, which is 28.7 nm for Fe, 40.7 nm for Co,
and 35.2 nm for Ni. This range includes the wavelengths
reported by Vlaminck and Bailleul in their recent measure-
ment of spin polarization.4

Results for the three metals are qualitatively similar. The
most striking trend is a dramatic order of magnitude decrease
in the damping rate at the lowest scattering rate tested as the
wave-vector magnitude increases from zero to 1% of the
Brillouin-zone edge. This observation holds in each metal for
every magnon propagation direction investigated. For the
higher scattering rates expected in devices at room tempera-
ture there is almost no change in the damping rate as the
magnon wave vector increases from zero to 1% of the
Brillouin-zone edge in any of the directions investigated for
any of the metals.

To understand the different dependences of the damping
rate on the magnon wave vector at low versus high scattering
rates we first note that the damping rate �Eqs. �2� and �3�� is
a convolution of two factors: the torque matrix elements and
the weighting function. The matrix elements do not change
significantly as the magnon wave vector increases, however,
the weighting function can change substantially. The weight-
ing function

Wnm�k,k + q� 
 An,k�	F�Am,k+q�	F� �4�

contains a product of the initial and final-state electron spec-
tral functions

An,k�	� =
1

�

��

�	 − 	n,k�2 + ����2 , �5�

which are Lorentzians in energy space. The spectral function
for state �n ,k	, which has nominal band energy 	n,k, is evalu-
ated within a very narrow range of the Fermi level 	F. The
width of the spectral function �� is given by the electron-
scattering rate �=1 /2
, where 
 is the orbital lifetime. �The
lifetimes of all orbital states are taken to be equal for these
calculations and no specific scattering mechanism is im-
plied.� The weighting function restricts the electron-hole pair
generated during the magnon decay to states close in energy
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FIG. 1. �Color online� Damping rates versus scattering rate. The
precession damping rates for magnons in iron, cobalt, and nickel are
plotted versus electron-scattering rate for several magnon wave vec-
tors. A dramatic reduction in damping rate is observed at the lowest
scattering rates. The Landau-Lifshitz � �Gilbert �� damping param-
eter is given on the left �right� axes. Electron scattering rate is given
in eV on the top axis. Magnon wave-vector magnitudes are given in
units of the Brillouin-zone edge and directions are as indicated in
the text.
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to each other and near the Fermi level. For high scattering
rates, the electron spectral functions are significantly broad-
ened and the weighting function incorporates states within an
appreciable range �several hundred meV� of the Fermi level.
For low scattering rates, the spectral functions are quite nar-
row �only a few meV� and both the electron and hole state
must be very close to the Fermi level.

The second consideration useful for understanding the re-
sults of Fig. 1 is that the sum in Eqs. �2� and �3� can be
divided into intraband �n=m� and interband �n�m� terms.
For the uniform mode, these two contributions correspond to
different physical processes with the intraband contribution
dominating at low scattering rates and the interband terms
dominating at high scattering rates.14,18–20

For intraband scattering, the electron and hole occupy the
same band and must have essentially the same energy
�within ���. The energy difference between the electron and
hole states may be approximated as 	n,k+q−	n,k

q ·�	n,k /�k. The generation of intraband electron-hole
pairs responsible for intraband damping gets suppressed as
q ·�	n,k /�k becomes large compared to ��. Unless the bands
are very flat at the Fermi level there will be few locations on
the Fermi surface that maintain the condition q ·�	n,k /�k
��� for low scattering rates as the magnon wave vector
grows �see Fig. 2�. Indeed, at low scattering rates when �� is
only a few meV, Fig. 3 shows that the intraband contribution
to damping decreases markedly with only modest increase in
the magnon wave vector. Since the intraband contribution
dominates the interband term in this limit the total damping
rate also decreases sharply as the magnon wave vector is
increased for low scattering rates. For higher scattering rates,
the electron spectral functions are sufficiently broadened that
the overlap of intraband states does not decrease appreciably
as the states are separated by finite wave vector
�q ·�	n,k /�k��� generally holds over the Fermi surface�.

Therefore, the intraband contribution is largely independent
of magnon wave vector at high scattering rates.

The interband contribution to damping involves scattering
between states in different bands, separated by the magnon
wave vector q. Isolating the interband damping contribution
reveals that these contributions are insensitive to the magnon
wave vector at higher scattering rates where they form the
dominant contribution to damping �see Fig. 3�. To under-
stand these observations we again compare the spectral
broadening �� to the quasiparticle energy difference �n,k

m,k+q

=	m,k+q−	n,k. The quasiparticle energy difference may be ap-
proximated as �n,k

m,k+q ·��n,k
m,k /�k. The interband energy

spacings are effectively modulated by the product of the
magnon wave vector and the slopes of the bands. At high
scattering rates, when the spectral broadening exceeds the
vertical band spacings, this energy modulation is unimpor-
tant and the damping rate is independent of the magnon
wave vector. At low scattering rates, when the spectral
broadening is less than many of the band spacings, this
modulation can alter the interband energy spacings enough to
allow or forbid generation of these electron-hole pairs. For
Fe, Co, and Ni, this produces a modest increase in the inter-
band damping rate at low scattering rates as the magnon
wave vector increases. However, this effect is unimportant to
the total damping rate, which remains dominated by the
intraband terms at low scattering rates.

Lastly, we describe the numerical methods employed in
this study. Converged ground-state electron densities were
first obtained via the linear-augmented-plane-wave method.
The Perdew-Wang functional for exchange-correlation
within the local spin-density approximation was imple-
mented. Many details of the ground-state density conver-
gence process are given in Ref. 23. Densities were then ex-
panded into Kohn-Sham orbitals using a scalar-relativistic
spin-orbit interaction with the magnetization aligned along
the experimentally determined magnetocrystalline anisotropy
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FIG. 2. �Color online� Partial band structure of bcc iron. The

horizontal black line indicates the Fermi level and the shaded region
represents the degree of spectral broadening. The solid dot is a
hypothetical initial electron state while the open circle is a potential
final scattering state. �Initial and final state wave-vector separations
are exaggerated for clarity of illustration.� The intraband magnon
decay rate diminishes as the energy separation of the states exceeds
the spectral broadening.
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FIG. 3. �Color online� Intraband and interband damping contri-
butions in iron. The intraband and interband contributions to the
damping rate of magnons in the �100	 direction in iron are plotted
versus scattering rate for several magnitudes of magnon wave vec-
tor. Magnitudes are given in units of the Brillouin-zone edge.
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easy axis. The Kohn-Sham energies were artificially broad-
ened through the ad-hoc introduction of an electron lifetime.
Matrix elements of the torque operator �−= �− ,Hso� were
evaluated similarly to the spin-orbit matrix elements.24 �− is
the spin lowering operator and Hso is the spin-orbit Hamil-
tonian.� The product of the matrix elements and the weight-
ing function were integrated over k space using the special-
point method with a fictitious smearing of the Fermi surface
for numerical stability. Convergence was obtained by sam-
pling the full Brillouin zone with 1603 k points for Fe and Ni,
and 1602�91 points for Co.

In summary, we have investigated the importance of non-
local damping effects by calculating the intrinsic spin-orbit
contribution to precession damping in bulk transition-metal
ferromagnets for small amplitude spin waves with finite
wavelengths. Results of the calculations do not contradict the
common-practice assumption that damping is a local phe-
nomenon. For transition metals, at scattering rates corre-
sponding to room temperature, we find that the single-mode
damping rate is essentially independent of magnon wave
vector for wave vectors between zero and 1% of the
Brillouin-zone edge. It is not until low temperatures in the
most pure samples that nonlocal effects become significant.

At these scattering rates, damping rates decrease by as much
as an order of magnitude as the magnon wave vector is in-
creased. The insensitivity of damping rate to magnon wave
vector at high scattering rates versus the strong sensitivity at
low scattering rates can be explained in terms of band-
structure effects. Due to electron spectral broadening at high
scattering rates the energy conservation constraint during
magnon decay is effectively relaxed, making the damping
rate independent of magnon wave vector. The minimal spec-
tral broadening at low scattering rates—seen only in very
pure and cold samples—greatly restricts the possible intra-
band scattering processes, lowering the damping rate. The
prediction of reduced damping at low scattering rates and
nonzero magnon wave vectors is of little practical impor-
tance, but could provide an accessible test of the torque-
correlation model. Specifically, this might be testable in fer-
romagnetic semiconductors such as �Ga,Mn�As for which
many spin-wave resonances have been experimentally ob-
served at low temperatures.25

This work has been supported in part through NIST-
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